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Abstract. A recirculating accelerator accelerates the beam by passing through accelerating cavities multiple
times. An FFAG recirculating accelerator uses a single arc to connect the linacs together, as opposed to multiple
arcs for the different energies. For most scenarios using high-frequency RF, it is impractical to change the phase
of the RF on each pass, at least for lower energy accelerators. Ideally, therefore, the FFAG arc will be isochronous,
so that the particles come back to the same phase (on-crest) on each linac pass. However, it is not possible to make
the FFAG arcs isochronous (compared to the RF period) over a large energy range. This paper demonstrates that
one can nonetheless make an FFAG recirculating accelerator work. Given the arc’s path length as a function
of energy and the number of turns to accelerate for, one can find the minimum voltage (and corresponding
initial conditions) required to accelerate a reference particle to the desired energy. I also briefly examine how
the longitudinal acceptance varies with the number of turns that one accelerates.

LATTICE DESCRIPTION

For the purposes of this paper, a recirculating accelerator
consists of an alternating sequence of identical linacs and
arcs. The arcs are identical in the sense that each has the
same path length as a function of energy. The linacs are
identical in the sense that they all have the same voltage
and the same phase. By “the same phase,” I first mean
that the phase of the RF does not change from one turn to
the next. Second, if there are M linacs in the recirculating
accelerator, the phase of one linac differs from that of the
previous linac by 2πk/M for some fixed integer k. If one
has an FFAG arc with a particular characteristic variation
of path length with energy, one can cause the path length
at one particular energy to give the same phase in the
linac following the arc as in the linac preceding the arc
by a combination of adding an additional length to the
arc and varying the aforementioned k. Changing k allows
one to keep the required changes to the dynamics of the
arc lattice small.

There are two extremes in this design: one is the race-
track design, where there are two long parallel linacs
connected by arcs; the opposite extreme is a distributed
RF system, where one has a sequence of short arcs with a
single RF cavity between them. The racetrack design al-
lows one to attempt to suppress dispersion in the linacs,
eliminating longitudinal-transverse coupling. It is gen-
erally difficult to suppress dispersion over a large en-
ergy range, and in addition, the dispersion suppression
may reduce the dynamic aperture of the system. The dis-
tributed RF system allows longitudinal-transverse cou-
pling, but maintains a high degree of symmetry in the
system, in principle giving a good dynamic aperture. The
longitudinal-transverse coupling may not be so impor-
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FIGURE 1. Path length as a function of energy for a single
6.5 m FFAG cell [1], calculated using COSY INFINITY [2].
Path length is given as a fraction of a 200 MHz RF period. The
solid line is the exact path length variation, the dashed line is a
quadratic approximation.

tant, however, since we are on-crest, and the energy gain
does not vary so strongly with time-of-flight (that varia-
tion is what causes the longitudinal-transverse coupling).

It turns out that the path length in an FFAG arc is
generally well approximated as a quadratic function of
energy (see Fig. 1 for an example). One would expect
that it is desirable to minimize the total variation in the
path length over the desired energy range, and so one
generally adjusts the lattice design to place the minimum
of the parabola in the center of the energy range of the
arc. Thus, the path length as a function of energy takes
the form

∆T
(

2E−Emax−Emin
Emax−Emin

)2

−T0. (1)



We expect ∆T to vary very little as T0 is adjusted over a
small range. Adjusting T0 changes the energies for which
the particle will see the same phase betweeen subsequent
linacs.

Time-of-flight variation with energy is ignored in the
linacs. For the purposes of this study, and considering the
relatively large energies that these recirculating acceler-
ators are designed for, it is a very good approximation
to distribute any path length variation with energy in the
linacs into the adjacent arcs.

EQUATIONS OF MOTION

The equations giving the energy and time-of-flight at the
entrance and exit of the linacs are

En+1 = En +V cos(ωτn) (2)

τn+1 = τn + ∆T
(

2En+1−Emax−Emin

Emax−Emin

)2

−T0. (3)

Here En is the energy after the nth pass through a linac
and τn is the time-of-flight relative to the crest in the nth
linac. It is useful to change coordinates to xn = ωτn and

pn =
2E−Emax−Emin

Emax−Emin
. (4)

Then the equations become

pn+1 = pn + vcosxn (5)

xn+1 = xn + ∆φ p2
n+1−φ0 (6)

where v = 2V/(Emax−Emin), ∆φ = ω∆T , and φ0 = ωT0.
Say we want to accelerate from Emax to Emin in N

turns. Then p0 = −1 and pN = 1. The problem that
we wish to solve is given these endpoint conditions,
minimize v by varying x0, the phase at which you enter
the first linac, and φ0. This solution will depend only on
∆φ and N.

Note that this problem can be formulated for any volt-
age profile (e.g., something different from cosφ ) as well
as a different relationship of time-of-flight to energy.
Changing the voltage profile will only change the re-
sults quantitatively, not qualitatively [3]. Changing the
relationship of time-of-flight to energy will be discussed
later.

Continuous Approximation

It is useful to make a continuous approximation to
Eqs. (5-6) [3]. The continuous approximation indicates
that for N∆φ large, v→ ∆φ/12, φ0 → ∆φ/4, and x0 →
−π/2. The reason that these results are interesting is that
they give a good approximation to what will occur in the
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FIGURE 2. Phase as a function of linac pass when ∆φ = 1
and N = 50.

discrete case. In particular, since the continuous approx-
imation has a solution for all N, we might expect that
the discrete system does as well. In the case of the dis-
tributed RF system, ∆φ is small and N is very large, and
the discrete equations are in fact a very good approxima-
tion to the continuous ones. For a racetrack system, how-
ever, it is far from clear that the approximation is good.
Since ∆φ is relatively large, the change of x in one step
can be large, making it questionable whether the contu-
ous approximation is really very good. However, we will
subsequently see that for a large number of turns, a large
fraction of the steps occur at points where the change in
x is small, and xn is large and therefore the change in p is
also small. The continuous approximation thus turns out
to give the correct results for large numbers of turns both
qualitatively and nearly quantitatively as well.

EXAMPLE

We now find the minimum-v solution of Eqs. (5-6) for
∆φ = 1. This is a relatively large phase swing: remem-
ber that the phase errors accumulate, and so after only 4
steps with this phase error, one would certainly be decel-
erating. This example is more appropriate for a racetrack
configuration: the phase swing per arc would be orders of
magnitude smaller for a distributed arc system (but there
would be correspondingly more linac passes required).

If one makes 50 linac passes for this system and per-
forms the aforementioned optimization, the phase as a
function of turn number is shown in Fig. 2. Note that
the reference particle crosses the crest three times; this is
related to the parabolic shape of the path length. The par-
ticle spends most of its time at the two turning points in
phase (turns 8-18 and 32-42); these are the points where
the path length error is near zero. Due to the large phase
at this point, the particle is not gaining very much energy,
and so remains at the point where the path length is near
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FIGURE 3. Linac voltage as a function of the number of
linac passes.
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FIGURE 4. Initial phase as a function of the number of linac
passes.

zero for a long time. This is the mechanism by which the
particle can spend an arbitrary number of turns in this
system.

Figure 3 shows the voltage as a function of the number
of linac passes, and Fig. 4 shows x0. For large numbers
of turns, these (including φ0, not shown) do appear to
be approching the large N limits given above. Note that
while it is not clear that x0 → −π/2 in Fig. 4, from
Fig. 2, one can see that the maximum phase swing is
slightly larger than −x0. The fact that ∆φ is large causes
this difference from the continuous approximation. It is
really the regime near the turning points in phase that
approaches the continuous approximation. It turns out
that the voltage limit as N→ ∞ is very slightly less than
what is found in the continuous approximation, and the
difference is also due to the the finite ∆φ .

Finally, Figs. 5 and 6 demonstrate how the acceptance
varies with the number of turns. A smaller number of
turns seems to caus a large region of phase space to be
accepted; what one sees at 8 linac passes is very close to
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FIGURE 5. Initial phase space that is accepted in a 8 linac
pass system. Each color represents a band of ±0.01 in pN .
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FIGURE 6. Initial phase space that is accepted in a 24 linac
pass system.

what one expects from on-crest acceleration. For a large
number of linac passes (24 here), one notes that most
everything that is accepted ends up within a small band
of the reference momentum at the final energy. In fact,
while it appears that there is a smaller total acceptance
for more turns, the phase space area ending up within a
small energy band at the end is mmuch larger for more
turns. The analysis of acceptance is still very preliminary,
and must be studied more thoroughly.
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